
1

8 October 2009 • 11:00 -12:00
Platform: DB2 for Linux, UNIX, Windows

Chris Eaton
DB2 Technical Evangelist

IBM Toronto Lab

Session: D17

Monitoring Your Database
with Just SQL

Abstract:
DB2 9 now offers very useful administrative views that are built into the
server. These views can help monitor database status, system performance,
database health as well as help diagnose database problems. The big benefit is
that you can do this with simple SQL statements in your very own simple
scripts. Chris will take you through these new administrative views and you
will walk away with a set of scripts to get you started.

2

2

Agenda

• Introduction to DB2 Monitoring Internals

• Introduction to monitoring via SQL

• Monitoring Status and Performance with SQL

• Monitoring Health and Diagnosing problems with SQL

Outline:
DB2 9 now offers very useful administrative views that are built into the
server. These views can help monitor database status, system performance,
database health as well as help diagnose database problems. The big benefit is
that you can do this with simple SQL statements in your very own simple
scripts. Chris will take you through these new administrative views and you
will walk away with a set of scripts to get you started.

Objectives:
Introduction to the DB2 9 administrative views
Queries to monitor database status
Queries to monitor database performance
Queries to monitor database health
Queries to diagnose database problems

3

3

Introduction to DB2 Monitoring Internals

4

4

DB2 Monitoring Internals

• What is Snapshot monitoring?
• A “picture” of the state of the DB2 system at a point in time
• A report on a set of counters (mostly) stored inside DB2
• Just like a camera, a snapshot is initiated by a human

• What is an Event monitor?
• A similar set of information (counters mostly) triggered by a

defined event
• For example, information about what an application did when

it disconnects from the database
• We won’t discuss Event Monitoring in this session

Snapshot monitoring gives you a view into what is happening with the database at an
instant in time. Just like a photograph captures a speeding car driving down the road,
so does the snapshot capture constantly changing information that is being tracked by
DB2. By the time you look at the snapshot, the values will likely have changed. The
way a snapshot is triggered is by external interfaces. So as an administrator, you need
to run a sql statement or call an application programming interface (API) to see the
snapshot information.

An event monitor on the other hand shows you what is happening when a given event
occurs. The collection of this information is triggered by an internal event. For
example, you can set an event monitor to trigger whenever an application disconnects
or when a deadlock occurs. Most of the elements gathered are the same for both
snapshot and event monitors.

In the rest of this presentation we will focus only on snapshot monitoring.

5

5

Types of Monitor Elements
• Counters

• Measures the number of times an activity occurs (always increases) – Can be
reset

• E.g.: Rows read from a table, number of physical page reads, etc.
• Gauges

• Indicates the current value of an item (may increase or decrease over time) – not
reset (value are current state)

• E.g.: Number of currently active sorts, amount of log space currently allocated, etc.
• Information

• Reference type information about a monitor element – not reset
• E.g.: Server Platform, Authentication ID of connected user, etc.

• Timestamp
• Indicates the date and time an activity took place. – not reset. Number of seconds

and microseconds since Jan 1, 1970
• E.g.: Last time a database was backed up, snapshot time, etc.

• Time
• Returns the number of seconds and microseconds spent on an activity – Can be

reset
• E.g.: Time spent reading data pages, elapsed time of a unit of work, etc.

There are roughly 540 monitor elements in total for DB2. Elements can be
categorized into the above types. Some give you counts, others give you high water
marks while others give you timing information and/or general information. In the
DB2 System Monitor Guide and Reference you can see a description of all 500+
monitor elements, what they store and how you can access them.

6

6

How Does It Work?

DB2 MemoryDB2 Memory

Bufferpool

Sortheap

Pkg Cache

Tablespaces

I/O

Snapshot as of 2004-10-01 9:04am
Pkg Cache Lookup = 2347
Sortheap Allocated = 100Meg
Async Read Time = 5000sec
Logical Read Time = 100ms

db2 get snapshot for database …

There are a large number of monitor elements keeping track of what is going on in the
database. Most of the monitor elements are like counters that continue to increment.
For example the number of lock escalations encountered, number of package cache
lookups, rows read from a table, rows written to a table, etc. Other counters act as a
high water mark like maximum total log space used, maximum number of concurrent
connections, etc. And others are more of informational like log object names (for
lock monitors), userid of the user running an application, etc.

When a snapshot is taken, the current value of these “counters” is displayed to the
user.

Counters can be reset at any time (back to 0 or null) and are automatically reset when
the instance is restarted.

7

7

Command Line Syntax

• GET SNAPSHOT FOR
• DATABASE MANAGER
• DATABASE ON <dbname>
• TABLESPACES ON <dbname>
• TABLES ON <dbname>
• BUFFERPOOLS ON <dbname>
• LOCKS ON <dbname>
• APPLICATIONS ON <dbname>
• DYNAMIC SQL ON <dbname>

• You must have SYSADM, SYSCTRL, SYSMAINT or
SYSMON authority

In addition to the above, you can also narrow in on specific applications by running a
get snapshot for application and specifying the specific application id that you want to
get information on.

Details on the exact syntax can be found in both the DB2 System Monitor Guide and
Reference as well as in the DB2 Command Reference.

8

8

Introduction to Monitoring
via SQL Functions

9

9

What’s a Table UDF

• UDF = User Defined Function
• Shipped with DB2 – not user defined

• A function that takes a structured set of information and
makes appear to be a table

Instance name = DB2
Database manager status = Active
Service level = s040219
Private Sort heap allocated = 0
Private Sort heap high water mark = 277

Snapshot_dbm

2770S0402
19

ActiveDB2

Priv_sor
t_high

Priv_sor
t_alloc

Serv_l
evel

StatusInstance_
name

The term User Defined Function is somewhat of a misnomer in this case because
these UDFs are shipped by IBM (there is no user definition required). The set of
monitor UDFS take the monitor information and displays the information as if it were
a table to the rest of DB2. By turning the monitor information into table data, you
can then use the full power of SQL to manipulate and present the data however you
want. You can select only specific columns, perform arithmetic on the values, etc.
You will see a lot of examples that show what is possible in the next set of slides.

10

10

How Does It Work?

DB2 MemoryDB2 Memory

Bufferpool

Sortheap

Pkg Cache

Tablespaces

I/O

100500010023472004-10-
01 9:04am

Logical_rea
d_time

Async_rea
d_time

Sortheap
_alloc

Pkg_cac
he_look
up

Snapshot_tim
e

SELECT * FROM TABLE(SNAP_GET_DBM)

Executing the select statement works just like the clp command in that the monitors
are read and presented to the user when the snapshot is taken

11

11

•

• select * from table(snap_get_db_v91(‘’,-1)) as sntable

select * from table(snap_get_dbm(-1)) as sntable

The Syntax of a Select Statement

Table
Function

Name of the
table function

Argument
-1 = current partition number

Name given
to table

Arguments
“” = current database

-1 = current partition number

The syntax may look a bit strange because it is using the user defined table function
standard syntax. Each snapshot udf function takes either 1 or 2 arguments. Those that
take a single argument are at the instance level (so you don’t need to specify a
database name). The argument specifies the database partition number that you want
the information to come from. A -1 indicates to take the information from the
database partition that you are currently connected to.

For those udfs that take 2 arguments, the first is the database name that you want the
snapshot info from. If you specify a null, then the information is selected from the
currently connected database. The second argument is the database partition number.

12

12

DB2 9 Makes Your Life Simpler
– Administrative Views

• Table Functions still exist but now you have VIEWS
• All views are in the SYSIBMADM schema
• Convert coded values to text strings
• Can be a control point to allow people with lower

authority to view monitor information
• Grant select on view and execute on table function

By using the new administrative views for all the snapshot table functions, your SQL
can become a bit easier to read and write.
To select all the columns out of the snapshot_database udf, you need to run

select * from table(snapshot_database(‘’,-1)) as sntable
However, if you use the SYSIBMADM.SNAPDB view the above select statement
becomes

select * from sysibmadm.snapdb
So much less typing. As you will see in the next section, this simplification makes it
much easier to read your SQL.

13

13

SNAPSHOT Views
• Database Manager

• SNAPDBM
• SNAPDBM_MEMORY_POOL

• Database Level
• SNAPDB
• SNAPDB_MEMORY_POOL
• SNAPBP
• SNAPBP_PART
• SNAPHADR

• Application Level
• SNAPAPPL
• SNAPAPPL_INFO
• SNAPLOCKWAIT
• SNAPSTMT
• SNAPAGENT
• SNAPSUBSECTION
• SNAPAGENT_MEMORY_POOL
• SNAPDYN_SQL
• SNAPLOCK

• Object Level
• SNAPTAB
• SNAPTAB_REORG
• SNAPTBSP
• SNAPTBSP_PART
• SNAPTBSP_QUIESCER
• SNAPCONTAINER
• SNAPTBSP_RANGE
• SNAPUTIL
• SNAPUTIL_PROGRESS
• SNAPDETAILLOG
• SNAPSTORAGE_PATHS

• Database Partitioning Feature (DPF)
• SNAPFCM
• SNAPFCM_PART

New items are being added every release. The items above include views in
all DB2 8 and 9 releases. The ones in bold are the ones we will discuss further
in this presentation

14

14

“Convenience” Monitor Views
• APPLICATIONS
• APPL_PERFORMANCE
• BP_HITRATIO
• BP_READ_IO
• BP_WRITE_IO
• CONTAINER_UTILIZATION
• LOCKS_HELD

• LOCKWAIT
• LOG_UTILIZATION
• LONG_RUNNING_SQL
• QUERY_PREP_COST
• TBSP_UTILIZATION
• TOP_DYNAMIC_SQL

In DB2 9 some additional views were created for your convenience. That is,
they are based off of the views in the previous chart but they make calculations
easier by pre-computing some information for you. For example, rather than
having to calculate hit ratios by dividing logical reads by (logical reads plus
physical reads), the BP_HITRATIO view does that for you.

15

15

Administrative Views
• ADMINTABINFO
• ADMINTABCOMPRESSINFO
• ADMIN_GET_INDEX_INFO
• ADMIN_GET_INDEX_COMPRESS_INFO
• ADMIN_EST_INLINE_LENGTH
• ADMIN_IS_INLINED
• ADMIN_GET_DBP_MEM_USAGE
• DBCFG
• DBMCFG
• REG_VARIABLES
• DB_PARTITIONS
• DB_HISTORY

In addition to the convenience views, there are a set of administration views
that can assist administrators in finding specific information. For example, you
can see table compression information (percent of compression, space saved,
etc), registry variables directly from SQL and much more.

16

16

New 9.7 Monitor Functions

• Application Information
• MON_GET_CONNECTION
• MON_GET_CONNECTION_DETAILS
• MON_GET_PKG_CACHE_STMT
• MON_GET_UNIT_OF_WORK
• MON_GET_UNIT_OF_WORK_DETAI

LS

• Workload Management
• MON_GET_WORKLOAD
• MON_GET_WORKLOAD_DETAILS
• MON_GET_SERVICE_SUBCLASS
• MON_GET_SERVICE_SUBCLASS_D

ETAILS

• Object
• MON_GET_TABLE
• MON_GET_INDEX
• MON_GET_TABLESPACE
• MON_GET_CONTAINER
• MON_GET_BUFFERPOOL
• MON_GET_EXTENT_MOV

EMENT_STATUS

New Time Spent and Time Waiting Metrics – find bottlenecks

DB2 9.7 is adding even more monitoring capabilities by instrumenting DB2
internals even further. These monitor table functions allow you to look at how
much time was spent processing specific pieces of the query (cpu time,
compile time, sort time, read time, etc) as well as how much time is spent
waiting for things (waiting on I/O, logging, locks, etc.).

17

17

Monitoring Performance
With SQL Select Statements

18

18

Long Running SQL

SELECT ELAPSED_TIME_MIN,
SUBSTR(AUTHID,1,10) AS AUTH_ID,
AGENT_ID,
APPL_STATUS,
SUBSTR(STMT_TEXT,1,20) AS SQL_TEXT

FROM SYSIBMADM.LONG_RUNNING_SQL
WHERE ELAPSED_TIME_MIN > 0
ORDER BY ELAPSED_TIME_MIN DESC

ELAPSED_TIME_MIN AUTH_ID AGENT_ID APPL_STATUS SQL_TEXT
---------------- -------- -------- ----------- --------------

6 EATON 878 LOCKWAIT update org set deptn

ELAPSED_TIME_MIN AUTH_ID AGENT_ID APPL_STATUS SQL_TEXT
---------------- -------- -------- ----------- --------------

6 EATON 878 LOCKWAIT update org set deptn

A very easy to use administrative view is the SYSIBMADM.LONG_RUNNING_SQL
view which can quickly show you the longest running SQL statements currently
executing in your database. The columns of interest are below

Column name Data type Description or corresponding monitor element
SNAPSHOT_TIMESTAMP TIMESTAMP Time the report was generated.
ELAPSED_TIME_MIN INTEGER Elapsed time of the statement in minutes.
AGENT_ID BIGINT Application Handle (agent ID)
APPL_NAME VARRHAR(256) Application Name
APPL_STATUS VARCHAR(22) Application Status.
AUTHID VARCHAR(128) Authorization ID
INBOUND_COMM_ADDRESS VARCHAR(32) Inbound Communication Address
STMT_TEXT CLOB(16 M) SQL Dynamic Statement Text
DBPARTITIONNUM SMALLINT The database partition from which the data was retrieved for this row.

19

19

Buffer Pool Query
• Display buffer pool hit ratios (data, index and XML)

SELECT SUBSTR(BP_NAME,1,20) as BP_NAME,
TOTAL_HIT_RATIO_PERCENT as ALL_HR,
DATA_HIT_RATIO_PERCENT as DATA_HR,
INDEX_HIT_RATIO_PERCENT as INX_HR,
XDA_HIT_RATIO_PERCENT as XML_HR

FROM SYSIBMADM.BP_HITRATIO;

BP_NAME ALL_HR DATA_HR INX_HR XML_HR
-------------------- ------- ------- ------- -------
IBMDEFAULTBP 98 80 99 0
LARGE_BP 99 99 0 0
SMALL_BP 25 25 0 0

BP_NAME ALL_HR DATA_HR INX_HR XML_HR
-------------------- ------- ------- ------- -------
IBMDEFAULTBP 98 80 99 0
LARGE_BP 99 99 0 0
SMALL_BP 25 25 0 0

As previously mentioned the BP_HITRATIO view makes it much easier to
write SQL to monitor key bufferpool metrics. Here are the other columns in
this view:
Column name Data type Description or
corresponding monitor element
SNAPSHOT_TIMESTAMP TIMESTAMP Timestamp when the report was requested.
DB_NAME VARCHAR(128)

db_name - Database name
BP_NAME VARCHAR(128)

bp_name - Buffer pool name
TOTAL_LOGICAL_READS BIGINT Total logical reads (index, XDA and data) in the
bufferpool.
TOTAL_PHYSICAL_READS BIGINT Total physical reads (index, XDA and data) in the
bufferpool.
TOTAL_HIT_RATIO_PERCENT DECIMAL(5,2) Total hit ratio (index, XDA and data reads).
DATA_LOGICAL_READS B IGINT pool_data_l_reads - Buffer pool
data logical reads
DATA_PHYSICAL_READS BIGINT pool_data_p_reads - Buffer pool data physical reads
DATA_HIT_RATIO_PERCENT DECIMAL(5,2) Data hit ratio.
INDEX_LOGICAL_READS BIGINT pool_index_l_reads - Buffer
pool index logical reads
INDEX_PHYSICAL_READS BIGINT pool_index_p_reads - Buffer pool index physical reads
INDEX_HIT_RATIO_PERCENT DECIMAL(5,2) Index hit ratio.
XDA_LOGICAL_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads
XDA_PHYSICAL_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads
XDA_HIT_RATIO_PERCENT DECIMAL(5,2) Auxiliary storage objects hit ratio.
DBPARTITIONNUM SMALLINT The database partition from which the data for the row
was retrieved.

20

20

Package Cache Query
• Look at all the queries in the package cache

• Both Dynamic and Static
• See execution time, wait time (by component), and much more

SELECT
SUBSTR(STMT_TEXT,1,20) AS STMT,
SECTION_TYPE AS TYPE,
NUM_EXECUTIONS,
TOTAL_ACT_TIME AS TOTAL_TIME,
TOTAL_ACT_WAIT_TIME AS WAIT_TIME

FROM TABLE(MON_GET_PKG_CACHE_STMT('','','',-1))

STMT TYPE NUM_EXECUTIONS TOTAL_TIME (ms) WAIT_TIME(ms)
-------------------- ---- --------------- ----------------- -------------
Select * from emp D 10 123 7
with aa as (select * D 100 2845 860

STMT TYPE NUM_EXECUTIONS TOTAL_TIME (ms) WAIT_TIME(ms)
-------------------- ---- --------------- ----------------- -------------
Select * from emp D 10 123 7
with aa as (select * D 100 2845 860

This new function has a wealth of new information available in it and will
likely be the place where more of your time will be spent going forward. The
next slide also shows the additional columns that are coming soon to this
monitor function.

21

21

Package Cache Query
• Other useful bits of information in the MON_GET_PKG_CACHE_STMT function

• NUM_EXECUTIONS
• PREP_TIME
• TOTAL_ACT_TIME
• TOTAL_ACT_WAIT_TIME
• TOTAL_CPU_TIME
• LOCK_WAIT_TIME
• TOTAL_SECTION_SORT_TIME
• TOTAL_SECTION_SORTS
• LOCK_ESCALS
• LOCK_WAITS
• ROWS_MODIFIED
• ROWS_READ
• TOTAL_SORTS
• SORT_OVERFLOWS
• DEADLOCKS
• LOCK_TIMEOUTS
• LOG_BUFFER_WAIT_TIME
• LOG_DISK_WAIT_TIME
• STMT_TEXT CLOB(2MB)

22

22

Lock Wait Query
select substr(ai_h.appl_name,1,10) as "Hold App",

substr(ai_h.primary_auth_id,1,10) as "Holder",
substr(ai_w.appl_name,1,10) as "Wait App",
substr(ai_w.primary_auth_id,1,10) as "Waiter",
lw.lock_mode as "Hold Mode",
lw.lock_object_type as "Obj Type",
substr(lw.tabname,1,10) as "TabName",
substr(lw.tabschema,1,10) as "Schema",
timestampdiff(2,char(lw.snapshot_timestamp -

lw.lock_wait_start_time))
as "waiting (s)"

from sysibmadm.snapappl_info ai_h,
sysibmadm.snapappl_info ai_w, sysibmadm.snaplockwait lw

where lw.agent_id = ai_w.agent_id
and lw.agent_id_holding_lk = ai_h.agent_id

Who is holding
the lock

Who is waiting on the lock

How long is the wait

Hold App Holder Wait App Waiter Hold Mode Obj Typ TabName Schema waiting
--------- ------ --------- ------ --------- ------- ------- ------ -------
db2bp.exe CEATON db2bp.exe USER2 X Row T1 CEATON 15
db2bp.exe CEATON db2bp.exe USER1 X Row T1 CEATON 6

Hold App Holder Wait App Waiter Hold Mode Obj Typ TabName Schema waiting
--------- ------ --------- ------ --------- ------- ------- ------ -------
db2bp.exe CEATON db2bp.exe USER2 X Row T1 CEATON 15
db2bp.exe CEATON db2bp.exe USER1 X Row T1 CEATON 6

This query shows you any lock chains that currently exist. It shows the lock holder, the
application/user waiting on the lock as well as the object locked and the length of time the waiter has
been waiting. It is not abnormal to see lock wait chains. What is abnormal is to see lengthy waiting
times. If you see long waits, you should look at what the holding application is doing (what SQL
statement and what the application status is) to determine if the application is well tuned.

-- Example of 2 users both waiting on a row held by CEATON
-- Hold App Holder Wait App Waiter Hold Mode Obj Type TabName Schema waiting (s)
-- ---------- ---------- ---------- ---------- --------- -------- ---------- ---------- -----------
-- db2bp.exe CEATON db2bp.exe USER2 X Row T1 CEATON 15
-- db2bp.exe CEATON db2bp.exe USER1 X Row T1 CEATON 6

-- Example of lock chain where ceaton holds X lock that user1 wants and user2 is held up behind user1
-- Hold App Holder Wait App Waiter Hold Mode Obj Type TabName Schema waiting (s)
-- ---------- ---------- ---------- ---------- --------- -------- ---------- ---------- -----------
-- db2bp.exe USER1 db2bp.exe USER2 X Row T1 CEATON 2
-- db2bp.exe CEATON db2bp.exe USER1 X Row T1 CEATON 32

23

23

Excessive Sorting
• Show the sort time, and wait time for all sorts by connection

SELECT
APPLICATION_HANDLE AS APP_HDL,
SUBSTR(CLIENT_USERID,1,10) AS USERID,
TOTAL_SECTION_SORTS AS NUM_SORTS,
TOTAL_SECTION_SORT_TIME AS TOTAL_TIME,
TOTAL_SECTION_SORT_PROC_TIME AS SORT_TIME,
TOTAL_SECTION_SORT_TIME -
TOTAL_SECTION_SORT_PROC_TIME AS WAIT_TIME

FROM TABLE(MON_GET_CONNECTION(NULL,-1))

APP_HDL USERID NUM_SORTS TOTAL_TIME SORT_TIME WAIT_TIME
--------- ---------- --------- ---------- --------- ---------

7 CEATON 36 7579 7495 84

APP_HDL USERID NUM_SORTS TOTAL_TIME SORT_TIME WAIT_TIME
--------- ---------- --------- ---------- --------- ---------

7 CEATON 36 7579 7495 84

Another new monitor function is the MON_GET_CONNECTION table
function. This rolls up all the statements for a given connection and shows a
wealth of information about a given connection. Here is just a sample of some
of the columns (see the information center for all the details).
Column name Data type Description
APPLICATION_HANDLE BIGINT application_handle - Application handle
APPLICATION_NAME VARCHAR(128) Reserved for future use.
APPLICATION_ID VARCHAR(128) Reserved for future use.
MEMBER SMALLINT member- Database member
CLIENT_WRKSTNNAME VARCHAR(255) CURRENT CLIENT_WRKSTNNAME special register
CLIENT_ACCTNG VARCHAR(255) CURRENT CLIENT_ACCTNG special register
CLIENT_USERID VARCHAR(255) CURRENT CLIENT_USERID special register
CLIENT_APPLNAME VARCHAR(255) CURRENT CLIENT_APPLNAME special register
CLIENT_PID BIGINT Reserved for future use.
CLIENT_PRDID VARCHAR(128) Reserved for future use.
CLIENT_PLATFORM VARCHAR(12) Reserved for future use.
CLIENT_PROTOCOL VARCHAR(10) Reserved for future use.
SYSTEM_AUTH_ID VARCHAR(128) Reserved for future use.
SESSION_AUTH_ID VARCHAR(128) Reserved for future use.
COORD_MEMBER SMALLINT Reserved for future use.
CONNECTION_START_TIME TIMESTAMP Reserved for future use.
ACT_ABORTED_TOTAL BIGINT act_aborted_total - Total aborted activities
ACT_COMPLETED_TOTAL BIGINT act_completed_total - Total completed activities
ACT_REJECTED_TOTAL BIGINT act_rejected_total - Total rejected activities
AGENT_WAIT_TIME BIGINT agent_wait_time - Agent wait time
AGENT_WAITS_TOTAL BIGINT agent_waits_total - Total agent waits
POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical reads
POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index logical reads
POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool temporary data logical reads
POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool temporary index logical

24

24

Top Consuming Transactions
• Show the transactions with the most CPU and most Wait Time

SELECT
APPLICATION_HANDLE AS APP_HDL,
SUBSTR(CLIENT_USERID,1,10) AS USERID,
TOTAL_RQST_TIME,
TOTAL_CPU_TIME,
TOTAL_WAIT_TIME,
CLIENT_IDLE_WAIT_TIME

FROM TABLE(MON_GET_UNIT_OF_WORK(NULL,-1))

Similarly there is a new monitor function called
MON_GET_UNIT_OF_WORK which will show you all the metrics for all the
statements within a given unit of work. Additional columns include:
Column Name Data Type Description or corresponding monitor element
SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service superclass name
SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service subclass name
SERVICE_CLASS_ID INTEGER service_class_id - Service class ID
MEMBER SMALLINT member- Database member
COORD_MEMBER SMALLINT coord_member - Coordinator member
APPLICATION_HANDLE BIGINT application_handle - Application handle
APPLICATION_ID VARCHAR(128) Reserved for future use.
WORKLOAD_NAME VARCHAR(128) workload_name - Workload name
WORKLOAD_OCCURRENCE_ID INTEGER workload_occurrence_id - Workload occurrence
identifier. This ID does not uniquely identify the workload occurrence unless it is coupled with the coordinator member and the
workload name.
UOW_ID INTEGER uow_id - Unit of work ID
WORKLOAD_OCCURRENCE_STATE VARCHAR(32) workload_occurrence_state - Workload occurrence state
CLIENT_WRKSTNNAME VARCHAR(255) CURRENT CLIENT_WRKSTNNAME special register
CLIENT_ACCTNG VARCHAR(255) CURRENT CLIENT_ACCTNG special register
CLIENT_USERID VARCHAR(255) CURRENT CLIENT_USERID special register
CLIENT_APPLNAME VARCHAR(255) CURRENT CLIENT_APPLNAME special register
UOW_START_TIME TIMESTAMP Reserved for future use.
SESSION_AUTH_ID VARCHAR(128) Reserved for future use.
ACT_ABORTED_TOTAL BIGINT act_aborted_total - Total aborted activities
ACT_COMPLETED_TOTAL BIGINT act_completed_total - Total completed activities
ACT_REJECTED_TOTAL BIGINT act_rejected_total - Total rejected activities
AGENT_WAIT_TIME BIGINT agent_wait_time - Agent wait time
AGENT_WAITS_TOTAL BIGINT agent_waits_total - Total agent waits
POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical reads
POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index logical reads

25

25

Coming Soon
• Unit of Work monitor will also include

26

26

Monitoring Health And Status
With SQL Select Statements

27

27

Monitoring Table Access
• Show the most active tables

SELECT
SUBSTR(TABSCHEMA,1,10) AS SCHEMA,
SUBSTR(TABNAME,1,20) AS NAME,
TABLE_SCANS,
ROWS_READ,
ROWS_INSERTED,
ROWS_DELETED

FROM TABLE(MON_GET_TABLE('','',-1))
ORDER BY ROWS_READ DESC
FETCH FIRST 5 ROWS ONLY

SCHEMA NAME TABLE_SCANS ROWS_READ ROWS_INSERTED ROWS_DELETED
---------- ------------- ----------- --------- ------------- ------------
CEATON WIKI_ACTIONS 14 6608 500 0
SYSIBM SYSTABLES 16 6161 0 0
CEATON WIKI_VISITORS 12 5664 0 70
SYSTOOLS HMON_ATM_INFO 19 3627 0 0
SYSIBM SYSINDEXES 0 348 0 0

SCHEMA NAME TABLE_SCANS ROWS_READ ROWS_INSERTED ROWS_DELETED
---------- ------------- ----------- --------- ------------- ------------
CEATON WIKI_ACTIONS 14 6608 500 0
SYSIBM SYSTABLES 16 6161 0 0
CEATON WIKI_VISITORS 12 5664 0 70
SYSTOOLS HMON_ATM_INFO 19 3627 0 0
SYSIBM SYSINDEXES 0 348 0 0

There are also a set of monitor functions for objects within the database to
show you how often a given object has been accessed, updated, etc.
This example shows access for table objects. Columns include
Column Name Data Type Description
TABSCHEMA VARCHAR(128) table_schema - Table schema name
TABNAME VARCHAR(128) table_name - Table name
MEMBER SMALLINT member- Database member
TAB_TYPE VARCHAR(14) table_type - Table type. This interface returns a text identifier based on defines in sqlmon.h, and is
one of:

* USER_TABLE
* DROPPED_TABLE
* TEMP_TABLE
* CATALOG_TABLE
* REORG_TABLE

TAB_FILE_ID BIGINT table_file_id - Table file ID
DATA_PARTITION_ID INTEGER data_partition_id - Data partition identifier
TBSP_ID BIGINT tablespace_id - Table space identification
INDEX_TBSP_ID BIGINT index_tbsp_id - Index table space ID
LONG_TBSP_ID BIGINT long_tbsp_id - Long table space ID
TABLE_SCANS BIGINT table_scans - Table scans
ROWS_READ BIGINT rows_read - Rows read
ROWS_INSERTED BIGINT rows_inserted - Rows inserted
ROWS_UPDATED BIGINT rows_updated - Rows updated
ROWS_DELETED BIGINT rows_deleted - Rows deleted
OVERFLOW_ACCESSES BIGINT overflow_accesses - Accesses to overflowed records
OVERFLOW_CREATES BIGINT overflow_creates - Overflow creates
PAGE_REORGS BIGINT Reserved for future use.
ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

28

28

Monitoring Index Access
• Show me the indexes that have been most active

• Metrics will only be returned for indexes on tables that have been accessed since the
database was activated.

SELECT
SUBSTR(TABSCHEMA,1,10) AS SCHEMA,
SUBSTR(TABNAME,1,20) AS NAME,
IID, NLEAF, NLEVELS,
INDEX_SCANS,
KEY_UPDATES,
BOUNDARY_LEAF_NODE_SPLITS +
NONBOUNDARY_LEAF_NODE_SPLITS AS PAGE_SPLITS

FROM TABLE(MON_GET_INDEX('','',-1))
ORDER BY INDEX_SCANS DESC
FETCH FIRST 5 ROWS ONLY

SCHEMA NAME IID NLEAF NLEVELS INDEX_SCANS UPDATES SPLITS
--------- -------------- ---- ------ ------- ----------- ------- ------
SYSTOOLS HMON_ATM_INFO 1 2 2 754 0 0
SYSIBM SYSUSERAUTH 1 8 2 425 0 0
SYSIBM SYSPLANAUTH 1 9 2 192 0 0
SYSIBM SYSTABLES 1 6 2 186 0 0
SYSIBM SYSINDEXES 2 5 2 145 0 0

SCHEMA NAME IID NLEAF NLEVELS INDEX_SCANS UPDATES SPLITS
--------- -------------- ---- ------ ------- ----------- ------- ------
SYSTOOLS HMON_ATM_INFO 1 2 2 754 0 0
SYSIBM SYSUSERAUTH 1 8 2 425 0 0
SYSIBM SYSPLANAUTH 1 9 2 192 0 0
SYSIBM SYSTABLES 1 6 2 186 0 0
SYSIBM SYSINDEXES 2 5 2 145 0 0

Similar to the table monitor, there is one for indexes as well which shows all
index access since the database was activated.
Column Name Data Type Description or corresponding monitor element
TABSCHEMA VARCHAR(128) table_schema - Table schema name
TABNAME VARCHAR(128) table_name - Table name
IID SMALLINT iid - Index identifier
MEMBER SMALLINT member- Database member
DATA_PARTITION_ID INTEGER data_partition_id - Data partition identifier. If index is not
partitioned, NULL is returned.
NLEAF BIGINT nleaf - Number of leaf pages
NLEVELS SMALLINT nlevels - Number of index levels
INDEX_SCANS BIGINT index_scans - Index scans
INDEX_ONLY_SCANS BIGINT index_only_scans - Index-only scans
KEY_UPDATES BIGINT key_updates - Key updates
INCLUDE_COL_UPDATES BIGINT include_col_updates - Include column updates
PSEUDO_DELETES BIGINT pseudo_deletes - Pseudo deletes
DEL_KEYS_CLEANED BIGINT del_keys_cleaned - Pseudo deleted keys cleaned
ROOT_NODE_SPLITS BIGINT root_node_splits - Root node splits
INT_NODE_SPLITS BIGINT int_node_splits - Intermediate node splits
BOUNDARY_LEAF_NODE_SPLITS BIGINT boundary_leaf_node_splits - Boundary leaf node splits
NONBOUNDARY_LEAF_NODE_SPLITS BIGINT nonboundary_leaf_node_splits - Non-boundary leaf node
splits
PAGE_ALLOCATIONS BIGINT page_allocations - Page allocations
PSEUDO_EMPTY_PAGES BIGINT pseudo_empty_pages - Pseudo empty pages
EMPTY_PAGES_REUSED BIGINT empty_pages_reused - Empty pages reused
EMPTY_PAGES_DELETED BIGINT empty_pages_deleted - Empty pages deleted
PAGES_MERGED BIGINT pages_merged - Pages merged
ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

29

29

SQL to View Notification Log
• Show me all the Critical and Error messages in the last 24 hours

SELECT TIMESTAMP, SUBSTR(MSG,1,400) AS MSG
FROM SYSIBMADM.PDLOGMSGS_LAST24HOURS
WHERE MSGSEVERITY IN ('C','E')
ORDER BY TIMESTAMP DESC

• Show me all the messages in the notify log from the last 3 days

SELECT TIMESTAMP, SUBSTR(MSG,1,400) AS MSG
FROM TABLE

(PD_GET_LOG_MSGS(CURRENT TIMESTAMP - 3 DAYS))
AS PD

ORDER BY TIMESTAMP DESC

TIMESTAMP MSG
-------------------------- ---
2009-03-16-09.41.47.673002 ADM6044E The DMS table space "SMALLTBSP" (ID "2") is
full. If this is an autoresize or automatic storage DMS tablespace, the maximum table space
size may have been reached or the existing containers or storage paths cannot grow any
more. Additional space can be added to the table space by either adding new containers or
extending existing ones using the ALTER TABLESPACE SQL statement.

TIMESTAMP MSG
-------------------------- ---
2009-03-16-09.41.47.673002 ADM6044E The DMS table space "SMALLTBSP" (ID "2") is
full. If this is an autoresize or automatic storage DMS tablespace, the maximum table space
size may have been reached or the existing containers or storage paths cannot grow any
more. Additional space can be added to the table space by either adding new containers or
extending existing ones using the ALTER TABLESPACE SQL statement.

There is an administrative view called SYSIBMADM.PDLOGMSGS_LAST24HOURS. This view
shows you the messages that exist in the notification log over the last 24 hours. The DDL for this view
is as follows:
TIMESTAMP
TIMEZONE
INSTANCENAME
DBPARTITIONNUM
DBNAME
PID
PROCESSNAME
TID
APPL_ID
COMPONENT
FUNCTION
PROBE
MSGNUM
MSGTYPE
MSGSEVERITY
MSG

If you want to view notification log messages that are older then 24 hours then use the
PD_GET_LOG_MSGS table function and specify the start time you want to view messages from. The
columns returned from the table function are the same as those of the PDLOGMSGS_LAST24HOURS
view.

30

30

SQL to View Database History

• Show the average and maximum time taken to perform full backups

SELECT AVG(TIMESTAMPDIFF(4,CHAR(
TIMESTAMP(END_TIME) - TIMESTAMP(START_TIME)))) AS AVG_BTIME,

MAX(TIMESTAMPDIFF(4,CHAR(
TIMESTAMP(END_TIME) - TIMESTAMP(START_TIME)))) AS MAX_BTIME

FROM SYSIBMADM.DB_HISTORY
WHERE OPERATION = 'B'

AND OPERATIONTYPE = 'F'

• Show any commands in the recovery history file that failed

SELECT START_TIME, SQLCODE, SUBSTR(CMD_TEXT,1,50)
FROM SYSIBMADM.DB_HISTORY

WHERE SQLCODE < 0

AVG_BTIME MAX_BTIME
----------- -----------

17 25

AVG_BTIME MAX_BTIME
----------- -----------

17 25

START_TIME SQLCODE CMD
-------------- ----------- ------------------------------------
20061114093635 -204 DROP TABLESPACE IBMDB2SAMPLEXML
20061218125352 -1422 CREATE REGULAR TABLESPACE SMALLTSP

START_TIME SQLCODE CMD
-------------- ----------- ------------------------------------
20061114093635 -204 DROP TABLESPACE IBMDB2SAMPLEXML
20061218125352 -1422 CREATE REGULAR TABLESPACE SMALLTSP

The view SYSIBMADM.DB_HISTORY gives you SQL access to the contents of the recovery history file. You no longer need to
run LIST HISTORY commands and parse the output. Instead you can run SQL scripts to look for exactly what you need from the
recovery history file. The columns in this view that I think are important are (for all columns see the link below)
DBPARTITIONNUM SMALLINT Database partition number.
START_TIME VARCHAR(14) Timestamp marking the start of a logged event.
END_TIME VARCHAR(14) Timestamp marking the end of a logged event.
FIRSTLOG VARCHAR(254) Name of the earliest transaction log associated with an event.
LASTLOG VARCHAR(254) Name of the latest transaction log associated with an event.
BACKUP_ID VARCHAR(24) Backup identifier or unique table identifier.
TABSCHEMA VARCHAR(128) Table schema.
TABNAME VARCHAR(128) Table name.
CMD_TEXT CLOB(2 M) Data definition language associated with a logged event.
NUM_TBSPS INTEGER Number of table spaces associated with a logged event.
TBSPNAMES CLOB(5 M) Names of the table spaces associated with a logged event.
OPERATION CHAR(1) Operation identifier.
OPERATIONTYPE CHAR(1) Action identifier for an operation.
OBJECTTYPE CHAR(1) Identifier for the target object of an operation. The possible values are: D for full
database, P for table space, and T for table.
LOCATION VARCHAR(255) Full path name for files, such as backup images or load input file, that are associated
with logged events.
DEVICETYPE CHAR(1) Identifier for the device type associated with a logged event. This field determines
how the LOCATION field is interpreted. The possible values are: A for TSM, C for client, D for disk, K for diskette, L for local,
N (generated internally by DB2), O for other (for other vendor device support), P for pipe, Q for cursor, R for remote fetch data, S
for server, T for tape, U for user exit, and X for X/Open XBSA interface.
SQLCODE INTEGER SQL return code, as it appears in the SQLCODE field of the SQLCA.
SQLSTATE VARCHAR(5) A return code that indicates the outcome of the most recently executed SQL
statement, as it appears in the SQLSTATE field of the SQLCA.

Operation values and their associated types can be found here
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0022351.htm

31

31

Finding the Log Hog
• Display information about the application that currently

has the oldest uncommitted unit of work

SELECT AI.APPL_STATUS as Status,
SUBSTR(AI.PRIMARY_AUTH_ID,1,10) AS "Authid",
SUBSTR(AI.APPL_NAME,1,15) AS "Appl Name",
INT(AP.UOW_LOG_SPACE_USED/1024/1024)

AS "Log Used (M)",
INT(AP.APPL_IDLE_TIME/60) AS "Idle for (min)",
AP.APPL_CON_TIME AS "Connected Since"

FROM SYSIBMADM.SNAPDB DB,
SYSIBMADM.SNAPAPPL AP,
SYSIBMADM.SNAPAPPL_INFO AI

WHERE AI.AGENT_ID = DB.APPL_ID_OLDEST_XACT
AND AI.AGENT_ID = AP.AGENT_ID;

In this example we are looking for the information about the application that is currently the oldest
transaction that is holding up the log tail. This transaction represents the total amount of recovery log
that must now be scanned in order to perform crash recover. That is we start from the log file with the
oldest uncommitted unit of work and read through the log files to the end in order to perform redo and
undo recovery in the event of a failure. If you are running out of active log space, it may be because an
uncommitted transaction has been sitting there for a long time (maybe someone went out for coffee).

There is a LOT of information in these snapshot tables. Too much to go through in this one slide. So I
will leave it to you to read through the documentation on these administrative views. I’m sure you will
find useful nuggets of information you can use.

SNAPAPPL_INFO
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0021987.h
tm
SNAPAPPL
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0021986.h
tm
SNAPDB
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0022003.h
tm

32

32

Summary
• Monitoring in DB2 is changing rapidly

• Moving to time spent and time waiting metrics
• Each release and fixpack will be adding more

monitor elements you can track

• Much of the support is targeted at helping tool vendors
• However, you can use SQL to get at the same info

33

33

Chris Eaton

IBM Toronto Lab
ceaton@ca.ibm.com

Session D17

Monitoring Your Database with Just SQL

Chris Eaton is Senior Product Manager for DB2 primarily focused on planning
and strategy for DB2. Chris has been working with DB2 on the Linux, UNIX,
Windows platform for over 16 years. From customer support to development
manager, to Externals Architect and now as Product Manager for DB2, Chris
has spent his career listening to customers and working to make DB2 a better
product. Chris is the author of “IBM DB2 9 New Features” and “The High
Availability Guide for DB2” and has one of the most popular blogs about DB2
on IT Toolbox at http://it.toolbox.com/blogs/db2luw

